Sains Malaysiana 53(12)(2024): 3319-3328

http://doi.org/10.17576/jsm-2024-5312-15

 

Characterization of Graphene Oxide Functionalized Carbon Foam as a Potential Material for Different Applications

(Pencirian Span Melamin Berfungsian Grafin Oksida sebagai Elektrod Bahan Berpotensi bagi Aplikasi Pelbagai)

 

BALARABE EL-YAQUB1,2, MOHD HANIFF WAHID1,*, ZULKARNAIN ZAINAL1,4, ABDUL HALIM ABDULLAH1 & WAN AZLINA WAN AB KARIM GHANI3

 

1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Department of Chemistry, Faculty of Science, Nigerian Defence Academy, Kaduna State, Nigeria
3Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4Nanomaterials Synthesis and Characterizations Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

Received: 4 May 2024/Accepted: 18 October 2024

 

Abstract

Due to its cheap production, high electrical conductivity, simplicity of doping, and enhanced hydrophilic characteristic, porous carbon foam has a lot of potential for energy storage and conversion applications. In this study, graphene oxide (GO) was successfully grafted onto carbon foam using a simple dip coating technique with the help of a linker. 3D porous carbon foams were created using a one-step carbonization from commercial melamine foam. The material was characterized using XRD, FTIR, BET, TGA, XPS, Raman and FESEM to confirm its structural, functional group, surface area, thermal stability, and morphological characteristics. The stress-strain tests of the samples were conducted on an electronic universal testing machine. These foams have sufficient surface area (99 m2/g), a high level of C content (79.15%), and excellent compressibility. Moreover, as a proposed material for different applications, this distinctive GO grafted porous carbon foam also has the tendency to deliver remarkable performance in different fields of study. In conclusion, the GO grafted porous carbon foams have excellent prospects for different applications due to the straightforward preparation process and fascinating properties.

 

Keywords: Energy storage; graphene oxide; melamine foam; porous carbon foam 

 

Abstrak

Foam karbon berliang memiliki potensi besar dalam aplikasi penyimpanan dan penukaran tenaga disebabkan oleh penghasilan yang murah, kekonduksian elektrik yang tinggi, proses pendopan yang mudah dan sifat hidrofilik yang unggul. Dalam kajian ini, grafin oksida telah berjaya dicantumkan pada foam karbon menggunakan teknik celupan mudah dengan kehadiran linker. Foam karbon berliang telah dihasilkan menggunakan satu langkah pengkarbonan dan proses aktivasi ke atas foam melamin komersial. Bahan telah dicirikan menggunakan XRD, FTIR, BET, XPS, Raman dan FESEM bagi mengesahkan struktur, kumpulan berfungsi, luas permukaan dan ciri morfologi. Ujian mampat dan regang ke atas sampel telah dijalankan dengan menggunakan ujian mesin universal elektronik. Foam ini memiliki luas permukaan yang tinggi (99 m2/g), kandungan karbon yang tinggi (79.15%) dan kebolehmampatan cemerlang. Tambahan pula, sebagai elektrod cadangan bagi semua superkapasitor keadaan pepejal, foam karbon berliang istimewa ini memiliki kecenderungan untuk memberi kapasitan khusus yang mengagumkan. Secara kesimpulannya, foam karbon berliang memiliki prospek cemerlang kerana proses penyediaan yang mudah dan sifat-sifat yang menakjubkan.

Kata kunci: Foam karbon; foam melamin; grafin oksida; penyimpanan tenaga; superkapasitor

 

REFERENCES

Asasian-Kolur, N., Sharifian, S., Haddadi, B., Jordan, C. & Harasek, M. 2024. Ordered porous carbon preparation by hard templating approach for hydrogen adsorption application. Biomass Conversion and Biorefinery 14(16): 18381-18416.

Cao, W., Ling, S., Chen, H., He, H., Li, X. & Zhang, C. 2022. 3D-printed ultralight, superelastic reduced graphene oxide/manganese dioxide foam for high-performance compressible supercapacitors. Industrial & Engineering Chemistry Research 61(30): 10922-10930.

Chen, X., Yu, H., Gao, Y., Wang, L. & Wang, G. 2022. The marriage of two-dimensional materials and phase change materials for energy storage, conversion and applications. EnergyChem 4(2): 100071.

Das, H.T., Dutta, S., Balaji, T.E., Das, N., Das, P., Dheer, N., Kanojia, R., Ahuja, P. & Ujjain, S.K. 2022. Recent trends in carbon nanotube electrodes for flexible supercapacitors: A review of smart energy storage device assembly and performance. Chemosensors 10(6): 223.

Delbari, S.A., Ghadimi, L.S., Hadi, R., Farhoudian, S., Nedaei, M., Babapoor, A., Namini, A.S., Van Le, Q., Shokouhimehr, M. & Asl, M.S. 2021. Transition metal oxide-based electrode materials for flexible supercapacitors: A review. Journal of Alloys and Compounds 857: 158281.

Fang, D., He, F., Xie, J. & Xue, L. 2020. Calibration of binding energy positions with C1s for XPS results. Journal of Wuhan University of Technology-Mater. Sci. Ed. 35(4): 711-718.

Jain, A., Ziai, Y., Bochenek, K., Manippady, S.R., Pierini, F. & Michalska, M. 2023. Utilization of compressible hydrogels as electrolyte materials for supercapacitor applications. RSC Advances 13( 17): 11503-11512.

Jiang, L. & Lu, X. 2021. Functional hydrogel-based supercapacitors for wearable bioelectronic devices. Materials Chemistry Frontiers 5(20): 7479-7498.

Jing, X., Wang, L., Qu, K., Li, R., Kang, W., Li, H. & Xiong, S. 2021. KOH chemical-activated porous carbon sponges for monolithic supercapacitor electrodes. ACS Applied Energy Materials 4(7): 6768-6776. https://doi.org/10.1021/acsaem.1c00868

Kumar, R., Youssry, S.M., Soe, H.M., Abdel-Galeil, M.M., Kawamura, G. & Matsuda, A. 2020. Honeycomb-like open-edged reduced-graphene-oxide-enclosed transition metal oxides (NiO/Co3O4) as improved electrode materials for high-performance supercapacitor. Journal of Energy Storage 30: 101539. https://doi.org/10.1016/j.est.2020.101539

Liu, H., Jiang, L., Wang, Y., Wang, X., Khan, J., Zhu, Y., Xiao, J., Li, L. & Han, L. 2023. Boosting oxygen reduction with coexistence of single-atomic Fe and Cu sites decorated nitrogen-doped porous carbon. Chemical Engineering Journal 452: 138938.

Luo, Y., Wen, M., Zhou, J., Wu, Q., Wei, G. & Fu, Y. 2023. Highly‐exposed Co‐CoO Derived from nanosized ZIF‐67 on N‐doped porous carbon foam as efficient electrocatalyst for zinc‐air battery. Small 19(43): 2302925.

Ma, L., Wei, Z., Zhao, C., Meng, X., Zhang, H., Song, M., Wang, Y., Li, B., Huang, X. & Xu, C. 2023. Hierarchical superhydrophilic/superaerophobic 3D porous trimetallic (Fe, Co, Ni) spinel/carbon/nickel foam for boosting oxygen evolution reaction. Applied Catalysis B: Environmental 332: 122717.

Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W. & Tour, J.M. 2010. سنتز اکسید گرافن بهبود یافته است. ACS Nano 4(8): 4806-4814. https://pubs.acs.org/doi/abs/10.1021/nn1006368

Muhammad, R., Park, J., Kim, H., So, S.H., Nah, Y-C. & Oh, H. 2023. Facile synthesis of ultrahigh-surface-area and hierarchically porous carbon for efficient capture and separation of CO2 and enhanced CH4 and H2 storage applications. Chemical Engineering Journal 473: 145344.

Muzaffar, N., Afzal, A.M., Hegazy, H.H. & Iqbal, M.W. 2023. Recent advances in two-dimensional metal-organic frameworks as an exotic candidate for the evaluation of redox-active sites in energy storage devices. Journal of Energy Storage 64: 107142.

Ponraj, J.S., Narayanan, M.V., Dharman, R.K., Santiyagu, V., Gopal, R. & Gaspar, J. 2021. Recent advances and need of green synthesis in two-dimensional materials for energy conversion and storage applications. Current Nanoscience 17(4): 554-571.

Priya, D.S., Kennedy, L.J. & Anand, G.T. 2023. Emerging trends in biomass-derived porous carbon materials for energy storage application: A critical review. Materials Today Sustainability 2023: 100320.

Rong, H., Song, H., Gao, T., Li, Y., Zhao, R. & Zhang, X. 2023. Ultralight melamine foam derived metal nanoparticles encapsulated CNTs/porous carbon composite for electromagnetic absorption. Synthetic Metals 294: 117306.

Shayesteh, H., Khosrowshahi, M.S., Mashhadimoslem, H., Maleki, F., Rabbani, Y. & Emrooz, H.B.M. 2023. Durable superhydrophobic/superoleophilic melamine foam based on biomass-derived porous carbon and multi-walled carbon nanotube for oil/water separation. Scientific Reports 13(1): 4515.

Shen, T., Zhao, Z., Zhong, Q., Qin, Y., Zhang, P. & Guo, Z.X. 2019. Preparation of graphene/Au aerogel film through the hydrothermal process and application for H2O2 detection. RSC Advances 9(23): 13042-13047. https://doi.org/10.1039/c9ra00516a

Vorokhta, M., Kusdhany, M.I.M., Vöröš, D., Nishihara, M., Sasaki, K. & Lyth, S.M. 2023. Microporous carbon foams: The effect of nitrogen-doping on CO2 capture and separation via pressure swing adsorption. Chemical Engineering Journal 471: 144524.

Wang, L. & Hu, X. 2018. Recent advances in porous carbon materials for electrochemical energy storage. Chemistry–An Asian Journal 13(12): 1518-1529.

Wang, M., Yang, Y. & Gao, W. 2021. Laser-engraved graphene for flexible and wearable electronics. Trends in Chemistry 3(11): 969-981.

Xu, M., Ma, Y., Liu, R., Liu, Y., Bai, Y., Wang, X., Huang, Y. & Yuan, G. 2020. Melamine sponge modified by graphene/polypyrrole as highly compressible supercapacitor electrodes. Synthetic Metals 267(June): 1-9. https://doi.org/10.1016/j.synthmet.2020.116461

Yan, C., Luo, Y., Zhang, W., Zhu, Z., Li, P., Li, N., Chen, Y. & Jin, T. 2022. Preparation of a novel melamine foam structure and properties. Journal of Applied Polymer Science 139(16): 51992.

Zhu, X., Zhou, G., He, G., Ma, L., Xu, B. & Sun, F. 2023. Directly loading graphene oxide into melamine sponge for fast and high-efficiency adsorption of methylene blue. Surfaces and Interfaces 36: 102575. https://doi.org/10.1016/j.surfin.2022.102575

 

*Corresponding author; email: mw_haniff@upm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya